Copied to
clipboard

G = C327D8order 144 = 24·32

2nd semidirect product of C32 and D8 acting via D8/D4=C2

metabelian, supersoluble, monomial

Aliases: C327D8, C12.16D6, D4⋊(C3⋊S3), (C3×D4)⋊1S3, C33(D4⋊S3), (C3×C6).34D4, C12⋊S33C2, C324C83C2, (D4×C32)⋊2C2, C6.22(C3⋊D4), (C3×C12).12C22, C2.4(C327D4), C4.1(C2×C3⋊S3), SmallGroup(144,96)

Series: Derived Chief Lower central Upper central

C1C3×C12 — C327D8
C1C3C32C3×C6C3×C12C12⋊S3 — C327D8
C32C3×C6C3×C12 — C327D8
C1C2C4D4

Generators and relations for C327D8
 G = < a,b,c,d | a3=b3=c8=d2=1, ab=ba, cac-1=dad=a-1, cbc-1=dbd=b-1, dcd=c-1 >

Subgroups: 258 in 66 conjugacy classes, 27 normal (11 characteristic)
C1, C2, C2, C3, C4, C22, S3, C6, C6, C8, D4, D4, C32, C12, D6, C2×C6, D8, C3⋊S3, C3×C6, C3×C6, C3⋊C8, D12, C3×D4, C3×C12, C2×C3⋊S3, C62, D4⋊S3, C324C8, C12⋊S3, D4×C32, C327D8
Quotients: C1, C2, C22, S3, D4, D6, D8, C3⋊S3, C3⋊D4, C2×C3⋊S3, D4⋊S3, C327D4, C327D8

Character table of C327D8

 class 12A2B2C3A3B3C3D46A6B6C6D6E6F6G6H6I6J6K6L8A8B12A12B12C12D
 size 114362222222224444444418184444
ρ1111111111111111111111111111    trivial
ρ211-1-1111111111-1-1-1-1-1-1-1-1111111    linear of order 2
ρ311-11111111111-1-1-1-1-1-1-1-1-1-11111    linear of order 2
ρ4111-111111111111111111-1-11111    linear of order 2
ρ522-20-12-1-12-1-12-1-2111111-2002-1-1-1    orthogonal lifted from D6
ρ62220-1-12-12-1-1-12-12-1-12-1-1-100-12-1-1    orthogonal lifted from S3
ρ722-202-1-1-12-12-1-1111-21-21100-1-1-12    orthogonal lifted from D6
ρ82220-12-1-12-1-12-12-1-1-1-1-1-12002-1-1-1    orthogonal lifted from S3
ρ922-20-1-12-12-1-1-121-211-211100-12-1-1    orthogonal lifted from D6
ρ1022002222-222220000000000-2-2-2-2    orthogonal lifted from D4
ρ1122-20-1-1-1222-1-1-111-2111-2100-1-12-1    orthogonal lifted from D6
ρ122220-1-1-1222-1-1-1-1-12-1-1-12-100-1-12-1    orthogonal lifted from S3
ρ1322202-1-1-12-12-1-1-1-1-12-12-1-100-1-1-12    orthogonal lifted from S3
ρ142-20022220-2-2-2-2000000002-20000    orthogonal lifted from D8
ρ152-20022220-2-2-2-200000000-220000    orthogonal lifted from D8
ρ1622002-1-1-1-2-12-1-1--3-3--30--30-3-300111-2    complex lifted from C3⋊D4
ρ1722002-1-1-1-2-12-1-1-3--3-30-30--3--300111-2    complex lifted from C3⋊D4
ρ182200-12-1-1-2-1-12-10--3--3--3-3-3-3000-2111    complex lifted from C3⋊D4
ρ192200-1-12-1-2-1-1-12-30--3-30--3-3--3001-211    complex lifted from C3⋊D4
ρ202200-1-1-12-22-1-1-1-3-30--3--3-30--30011-21    complex lifted from C3⋊D4
ρ212200-12-1-1-2-1-12-10-3-3-3--3--3--3000-2111    complex lifted from C3⋊D4
ρ222200-1-12-1-2-1-1-12--30-3--30-3--3-3001-211    complex lifted from C3⋊D4
ρ232200-1-1-12-22-1-1-1--3--30-3-3--30-30011-21    complex lifted from C3⋊D4
ρ244-400-24-2-2022-4200000000000000    orthogonal lifted from D4⋊S3, Schur index 2
ρ254-400-2-2-240-422200000000000000    orthogonal lifted from D4⋊S3, Schur index 2
ρ264-4004-2-2-202-42200000000000000    orthogonal lifted from D4⋊S3, Schur index 2
ρ274-400-2-24-20222-400000000000000    orthogonal lifted from D4⋊S3, Schur index 2

Smallest permutation representation of C327D8
On 72 points
Generators in S72
(1 9 47)(2 48 10)(3 11 41)(4 42 12)(5 13 43)(6 44 14)(7 15 45)(8 46 16)(17 55 72)(18 65 56)(19 49 66)(20 67 50)(21 51 68)(22 69 52)(23 53 70)(24 71 54)(25 58 34)(26 35 59)(27 60 36)(28 37 61)(29 62 38)(30 39 63)(31 64 40)(32 33 57)
(1 20 25)(2 26 21)(3 22 27)(4 28 23)(5 24 29)(6 30 17)(7 18 31)(8 32 19)(9 67 58)(10 59 68)(11 69 60)(12 61 70)(13 71 62)(14 63 72)(15 65 64)(16 57 66)(33 49 46)(34 47 50)(35 51 48)(36 41 52)(37 53 42)(38 43 54)(39 55 44)(40 45 56)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)
(2 8)(3 7)(4 6)(9 47)(10 46)(11 45)(12 44)(13 43)(14 42)(15 41)(16 48)(17 28)(18 27)(19 26)(20 25)(21 32)(22 31)(23 30)(24 29)(33 68)(34 67)(35 66)(36 65)(37 72)(38 71)(39 70)(40 69)(49 59)(50 58)(51 57)(52 64)(53 63)(54 62)(55 61)(56 60)

G:=sub<Sym(72)| (1,9,47)(2,48,10)(3,11,41)(4,42,12)(5,13,43)(6,44,14)(7,15,45)(8,46,16)(17,55,72)(18,65,56)(19,49,66)(20,67,50)(21,51,68)(22,69,52)(23,53,70)(24,71,54)(25,58,34)(26,35,59)(27,60,36)(28,37,61)(29,62,38)(30,39,63)(31,64,40)(32,33,57), (1,20,25)(2,26,21)(3,22,27)(4,28,23)(5,24,29)(6,30,17)(7,18,31)(8,32,19)(9,67,58)(10,59,68)(11,69,60)(12,61,70)(13,71,62)(14,63,72)(15,65,64)(16,57,66)(33,49,46)(34,47,50)(35,51,48)(36,41,52)(37,53,42)(38,43,54)(39,55,44)(40,45,56), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72), (2,8)(3,7)(4,6)(9,47)(10,46)(11,45)(12,44)(13,43)(14,42)(15,41)(16,48)(17,28)(18,27)(19,26)(20,25)(21,32)(22,31)(23,30)(24,29)(33,68)(34,67)(35,66)(36,65)(37,72)(38,71)(39,70)(40,69)(49,59)(50,58)(51,57)(52,64)(53,63)(54,62)(55,61)(56,60)>;

G:=Group( (1,9,47)(2,48,10)(3,11,41)(4,42,12)(5,13,43)(6,44,14)(7,15,45)(8,46,16)(17,55,72)(18,65,56)(19,49,66)(20,67,50)(21,51,68)(22,69,52)(23,53,70)(24,71,54)(25,58,34)(26,35,59)(27,60,36)(28,37,61)(29,62,38)(30,39,63)(31,64,40)(32,33,57), (1,20,25)(2,26,21)(3,22,27)(4,28,23)(5,24,29)(6,30,17)(7,18,31)(8,32,19)(9,67,58)(10,59,68)(11,69,60)(12,61,70)(13,71,62)(14,63,72)(15,65,64)(16,57,66)(33,49,46)(34,47,50)(35,51,48)(36,41,52)(37,53,42)(38,43,54)(39,55,44)(40,45,56), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72), (2,8)(3,7)(4,6)(9,47)(10,46)(11,45)(12,44)(13,43)(14,42)(15,41)(16,48)(17,28)(18,27)(19,26)(20,25)(21,32)(22,31)(23,30)(24,29)(33,68)(34,67)(35,66)(36,65)(37,72)(38,71)(39,70)(40,69)(49,59)(50,58)(51,57)(52,64)(53,63)(54,62)(55,61)(56,60) );

G=PermutationGroup([[(1,9,47),(2,48,10),(3,11,41),(4,42,12),(5,13,43),(6,44,14),(7,15,45),(8,46,16),(17,55,72),(18,65,56),(19,49,66),(20,67,50),(21,51,68),(22,69,52),(23,53,70),(24,71,54),(25,58,34),(26,35,59),(27,60,36),(28,37,61),(29,62,38),(30,39,63),(31,64,40),(32,33,57)], [(1,20,25),(2,26,21),(3,22,27),(4,28,23),(5,24,29),(6,30,17),(7,18,31),(8,32,19),(9,67,58),(10,59,68),(11,69,60),(12,61,70),(13,71,62),(14,63,72),(15,65,64),(16,57,66),(33,49,46),(34,47,50),(35,51,48),(36,41,52),(37,53,42),(38,43,54),(39,55,44),(40,45,56)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72)], [(2,8),(3,7),(4,6),(9,47),(10,46),(11,45),(12,44),(13,43),(14,42),(15,41),(16,48),(17,28),(18,27),(19,26),(20,25),(21,32),(22,31),(23,30),(24,29),(33,68),(34,67),(35,66),(36,65),(37,72),(38,71),(39,70),(40,69),(49,59),(50,58),(51,57),(52,64),(53,63),(54,62),(55,61),(56,60)]])

C327D8 is a maximal subgroup of
S3×D4⋊S3  Dic63D6  D12.7D6  Dic6.20D6  D8×C3⋊S3  C248D6  C247D6  C24.40D6  C62.131D4  C62.73D4  C62.74D4  He36D8  C36.18D6  C336D8  C337D8  C3315D8
C327D8 is a maximal quotient of
C12.9Dic6  C62.113D4  C327D16  C328SD32  C3210SD32  C327Q32  C62.116D4  C36.18D6  He37D8  C336D8  C337D8  C3315D8

Matrix representation of C327D8 in GL6(𝔽73)

100000
010000
0072100
0072000
000010
000001
,
7210000
7200000
0072100
0072000
000010
000001
,
60430000
30130000
0072100
000100
00005757
00001657
,
010000
100000
0072100
000100
000001
000010

G:=sub<GL(6,GF(73))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,72,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[72,72,0,0,0,0,1,0,0,0,0,0,0,0,72,72,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[60,30,0,0,0,0,43,13,0,0,0,0,0,0,72,0,0,0,0,0,1,1,0,0,0,0,0,0,57,16,0,0,0,0,57,57],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,72,0,0,0,0,0,1,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0] >;

C327D8 in GAP, Magma, Sage, TeX

C_3^2\rtimes_7D_8
% in TeX

G:=Group("C3^2:7D8");
// GroupNames label

G:=SmallGroup(144,96);
// by ID

G=gap.SmallGroup(144,96);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-3,-3,73,218,116,50,964,3461]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^3=c^8=d^2=1,a*b=b*a,c*a*c^-1=d*a*d=a^-1,c*b*c^-1=d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations

Export

Character table of C327D8 in TeX

׿
×
𝔽